Retinal Pigment Epithelium as a Barrier in Drug Permeation and as a Target of Non-Viral Gene Delivery

نویسنده

  • LEENA PITKÄNEN
چکیده

Retinal pigment epithelium (RPE) is a unique monolayer of cells which lie between the neural retina and the choroid. It plays an essential role in maintaining visual acuity and metabolic integrity in the retina. As a part of the blood-retina barrier, RPE restricts the molecules from blood flow and outer ocular layers from gaining access to the neural retina. Many retinal diseases may be relieved by delivery of neuroprotective or antiangiogenic factors to the retina. RPE is an interesting target for transfer of genes to induce a production of therapeutic proteins. Viral gene transfer vectors are most often used in gene therapy, but non-viral polymeric and liposomal vectors are more biocompatible and easier to produce. However, their gene transfer efficacy does not match that of viral vectors. For example, intravitreally given DNA must permeate the vitreous and the neural retina before reaching the RPE. In the present study, the limiting barriers after intravitreal non-viral gene delivery were identified. In vitro experiments with bovine vitreous and retina demonstrated that both vitreous and neural retina restrict the uptake of cationic gene complexes (DOTAP, PEI and PLL complexes) into the RPE. The large size and especially the positive charge of the complex are the reasons for a limited access into the RPE. Though, the exact mechanisms remain unclear. Oligonucleotides in solution were efficiently taken up by RPE cells, but the neural retina limits their permeation. The uptake of naked plasmid into RPE cells was very low even without the presence of vitreous or neural retina. Prolonged drug delivery to the posterior segment of the eye is a challenge in ophthalmology. After subconjunctival administration, the drug or gene product (resulting from cell or gene therapy) has to permeate across the sclera, choroid and RPE to reach the neural retina. The influence of lipophilicity (beta-blockers) and size (FITC-dextrans) of the permeants were assessed using isolated bovine choroid-RPE. For hydrophilic compounds, the choroid-RPE was 10-100 times less permeable than the sclera, whereas for lipophilic compounds the RPE and sclera were equal barriers emphasizing the important role of the RPE in permeation. The permeability of the RPE is a key factor also in the drug delivery from the systemic blood circulation into the retina. Choroid and RPE contain melanin that binds many drugs. Synthetic melanin is often used for binding studies. In the present study it was demonstrated that the melanin isolated from bovine ocular tissue and synthetic melanin differ in terms of size, surface area, shape, aggregation properties, and drug binding. Based on the data supplemented with further calculations it was estimated that the choroid-RPE contains 3-19 times more melanin bound betaxolol and metoprolol compared to the free drug. In contrast, phosphodiesterase oligonucleotides and carboxyfluorescein did not bind to melanin. In conclusion, the vitreous and neural retina are barriers to the non-viral gene transfer to the RPE. In transscleral delivery, the RPE-choroid is the rate-limiting barrier for large and hydrophilic molecules but not necessarily for lipophilic drugs. Furthermore, melanin binding modifies the pharmacokinetics of betaxolol and metoprolol at the cellular level in the posterior eye segment. National Library of Medicine Classification: QU 110, QV 132, WB 340, WW 103, WW 245, WW 250, WW 270 Medical Subject Headings: Adrenergic beta-Antagonists/ pharmacokinetics; Choroid/metabolism; Dextrans/pharmacokinetics; Drug Delivery Systems; Gene Transfer Techniques; Liposomes; Melanins; Permeability; Pigment Epithelium of Eye; Polymers; Retina; Vitreous Body

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barriers and recent advances in non-viral vectors targeting the lungs for cystic fibrosis gene therapy

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in CFTR genes that affect chloride ion channel. The CF is a good nominee for gene therapy as the asymptomatic carriers are phenotypically normal, and the desired cells are accessible for vector delivery. Gene therapy shows promising effects involving the correction of gene or replacement of the mutant gene with the func...

متن کامل

Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space

Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...

متن کامل

Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells.

Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target...

متن کامل

Pigment epithelium-derived factor: clinical significance in estrogen-dependent tissues and its potential in cancer therapy

Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the family of non-inhibitory serpins. The broad spectrum of PEDF biological activity is evident when considering its effects in promoting cell survival and proliferation, as well as its antiangiogenic, antitumor, and anti-metastatic properties. Although the structural domains of the PEDF gene that mediate such diverse ef...

متن کامل

Histochemical study of retinal photoreceptors development during pre- and postnatal period and their association with retinal pigment epithelium

Objective(s):The aim of this study was to evaluate distribution and changes of glycoconjugates of retinal photoreceptors during both pre- and postnatal development. Materials and Methods: Tissue sections from days 15 to 20 of Wistar rat embryos and 1 to 12 postnatal days of rat newborns including developing eye were prepared for lectinhistochemistry technique. Horseradish peroxidase (HRP)-label...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007